AP-C Objectives (from College Board Learning Objectives for AP Physics)

v 1. Motion in two dimensions, including projectile motion
v a. Students should be able to add, subtract, and resolve displacement and velocity vectors, so they can:

- i. Determine components of a vector along two specified, mutually perpendicular axes.
- ii. Determine the net displacement of a particle or the location of a particle relative to another.
- iii. Determine the change in velocity of a particle or the velocity of one particle relative to another.
- b. Students should understand the general motion of a particle in two dimensions so
that, given functions $\mathbf{x}(\mathbf{t})$ and $\mathbf{y}(\mathbf{t})$ which describe this motion, they can determine the components, magnitude, and direction of the particle's velocity and acceleration as functions of time.
v c. Students should understand the motion of projectiles in a uniform gravitational field, so they can:
- i. Write down expressions for the horizontal and vertical components of velocity and position as functions of time, and sketch or identify graphs of these components.
- ii. Use these expressions in analyzing the motion of a projectile that is projected with an arbitrary initial velocity.
v d. Students should understand frames of reference, so they can:
- i. Analyze the uniform motion of an object relative to a moving medium such as a flowing stream.
- ii. Analyze the motion of particles relative to a frame of reference that is accelerating horizontally or vertically at a uniform rate.

Objectives

- 1. Students should be able to add, subtract, and resolve displacement and velocity vectors, so they can:
- a. Determine components of a vector along two specified, mutually perpendicular axes.
- b. Determine the net displacement of a particle or the location of a particle relative to another.
- c. Determine the change in velocity of a particle or the velocity of one particle relative to another.
- 2. Students should understand the general motion of a particle in two dimensions so that, given functions $\mathbf{x}(\mathbf{t})$ and $\mathbf{y}(\mathbf{t})$ which describe this motion, they can determine the components, magnitude, and direction of the particle's velocity and acceleration as functions of time.

V Position Vector

The position vector, \mathbf{r}, always has its tail at the origin and its head at the current position of the object. The position vector can be written as both \mathbf{r} and \mathbf{s}.
$\vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}=\langle x(t), y(t)\rangle \quad \vec{v}_{\text {avg }}=\frac{\Delta \vec{r}}{\Delta t}$
$\vec{v}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{r}}{\Delta t}=\frac{d \vec{r}}{d t}=\frac{d x}{d t} \hat{i}+\frac{d y}{d t} \hat{j}=<\frac{d x}{d t}, \frac{d y}{d t}>$
$\vec{a}=\frac{d \vec{v}}{d t}=\frac{d^{2} x}{d t^{2}} \hat{i}+\frac{d^{2} y}{d t^{2}} \hat{j}=<\frac{d^{2} x}{d t^{2}}, \frac{d^{2} y}{d t^{2}}>$

V Vector Components

Vectors can be expressed as components along mutually perpendicular axes. Manipulating from one form to another is an important skill in analysis of vectors.

V Vector Addition and Subtraction

Graphic vector addition: Line up all vectors tip to tail, and draw a line from the starting point of the first vector to the ending point of the last vector.
Analytic vector addition: Sum up all components separately (x-components, y-components, etc.)
Vector subtraction: Add the opposite of the vector.

$A+B=C$

Objectives

マ 1. Students should understand the motion of projectiles in a uniform gravitational field, so they can:

- a. Write down expressions for the horizontal and vertical components of velocity and position as functions of time, and sketch or identify graphs of these components.
-b. Use these expressions in analyzing the motion of a projectile that is projected with an arbitrary initial velocity.

- Projectile Motion in a Uniform Gravitational Field
 Horizontal acceleration is 0 (neglect friction)
 Vertical acceleration is g (on Earth's surface, $9.81 \mathrm{~m} / \mathrm{s}^{2}$ down)
 Utilize constant acceleration kinematic equations

$$
\begin{aligned}
& v=v_{0}+a t \\
& x=x_{0}+v_{0} t+\frac{1}{2} a t^{2} \\
& v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)
\end{aligned}
$$

Objectives

v 1. Students should understand frames of reference, so they can:

- a. Analyze the uniform motion of an object relative to a moving medium such as a flowing stream.
- b. Analyze the motion of particles relative to a frame of reference that is accelerating horizontally or vertically at a uniform rate.

$$
v_{A C}=v_{A B}+v_{B C}
$$

V Example Problem (2D)

A sailor wants to sail his boat due north. The speed of the boat relative to the water is 20 km / h and the water flows from west to east at $9 \mathrm{~km} / \mathrm{h}$. In which direction should the boat head? How fast does the boat travel relative to the ground?
$\vec{v}_{B G}=\vec{v}_{B W}+\vec{v}_{W G}$
velocity of water with respect to ground
velocity of boat with respect to water
velocity of boat with respect to ground

